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A rivulet is a narrow stream of liquid flowing down a solid surface. When its flow
rate exceeds a certain limit, it tends to meander, exhibiting instability of the interface.
Here we report a perturbation analysis of this meandering rivulet. We find that the
combined effects of the tangential velocity difference across the interface and the dy-
namic wetting are responsible for the instability. The Weber number represents the
ratio of the destabilizing force, inertia, to the stabilizing force, surface tension. As the
Weber number increases, both the wavenumber of maximum instability and the cutoff
wavenumber increase. The effects of the capillarity are such that the wavenumber of
maximum instability asymptotically increases as the sensitivity of the dynamic contact
angles to the contact line speed increases. However, the cutoff wavenumber remains
constant despite wetting parameter changes when the Weber number is constant.

1. Introduction
When a liquid is supplied on a highly hydrophilic solid surface, a film flow arises.

On a relatively non-wetting surface, however, a narrow liquid stream, i.e. a rivulet, is
formed. Examples of this rivulet flow include a water stream on a windowpane in a
rainy day as well as liquid streams used in evaporation heat exchangers, absorption
refrigerators and cooling towers. The rivulet exhibits diverse flow patterns as Kern
(1969, 1971) and Schmuki & Laso (1990) observed. That is, as the flow rate increases,
the flow develops in the sequence droplet flow, linear straight rivulet, meandering
rivulet and turbulent oscillating rivulet.

A static rivulet is a liquid thread without an axial velocity component in its base
state and its instability was first addressed by Davis (1980). Schiaffino & Sonin (1997)
simplified the analysis by assuming inviscid quasi-one-dimensional liquid flow. They
found their approximate modelling results to agree fairly well with experimental
measurements using molten wax beads of characteristic length less than 100 µm,
even with the inviscid approximation. For a dynamic rivulet having an axial velocity
component in its base state, an axisymmetric instability causing it to break up into
drops was analysed by Young & Davis (1987). In the analysis, a fully developed base
flow approximation was employed. They found that the rivulet break-up mechanism
is similar to the capillary instability of a liquid jet, except for an effect of the dynamic
contact line, in that a high pressure in a pinched region pushes liquid into a thicker
region. However, their analysis, based on the lubrication flow approximation, only
predicts a varicose instability, failing to predict a sinuous or meandering instability.

In addition to the aforementioned studies on rivulets, the behaviour of viscous
liquid jets under a compressive force was studied by Taylor (1969) and Tchavdarov,
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Yarin & Radev (1993). Buckling of those jets appears similar to meandering of
rivulets. However, the buckling phenomenon is regarded as irrelevant to the rivulet
meandering for the following reasons. The meandering disappears as the flow velocity
decreases when viscosity is more likely to dominate. It is also well known that the
meandering becomes extremely pronounced as the flow rate increases when the effect
of viscosity diminishes. For very viscous liquids, only a linear rivulet occurs when the
liquid is supplied onto an inclined surface (Schmuki & Laso).

The goal of the present work is to investigate the instability mechanism that
disturbs a straight rivulet into a meander. Here we note that the rivulet’s meandering
instability is amplified as the flow rate increases as the foregoing rivulet flow regime
studies suggest. This implies that the inertial component plays an important role in
destabilizing a rivulet. It is also natural to relate the meandering instability to the
Kelvin–Helmholtz instability which arises when the layers of different fluids are in
relative tangential motion (Chandrasekhar 1961). In this context, the instability of
liquid streams surrounded by an ambient gas was studied by Hagerty & Shea (1955),
Debye & Daen (1959) and Yang (1992). Hagerty & Shea studied the instability of
a liquid sheet ejected into air and showed that the sinuous instability indeed takes
place. Debye & Daen extended the analysis to sheets and cylinders with surface
or body tension. Yang investigated the instability of a cylindrical liquid jet taking
into account the effects of the ambient gas. His perturbation analysis revealed that
when the inertia increases as compared with the surface tension, an asymmetric mode
including a sinuous perturbation is excited. However, those flow configurations studied
above are different from a rivulet, which is in contact with a solid surface and thus
involves dynamic contact lines. The character of the change of the dynamic contact
angles with the contact line speed determines the boundary condition of the flow and
also flow instability. Regarding the mechanism behind rivulet meandering, Culkin &
Davis (1984) suggested that inertia and surface tension destabilize and stabilize the
rivulet, respectively, under the effects of dynamic wetting. Hence a stability index, i.e.
a criterion for meandering, was given by the ratio of inertia to surface tension.

In this work, we perform a perturbation analysis to study the rivulet’s sinuous
or meandering instability, which has long been observed experimentally but not yet
theoretically clarified. We investigate the effects of the wetting properties including
equilibrium and dynamic contact angles and of the flow rate on the rivulet
instability. In addition, comparisons are made between our theoretical predictions
and measurement results both previously reported and obtained by an experiment
performed in this work.

2. Formulation
Consider a rivulet flowing down a solid surface with the width 2a as shown in

figure 1. The liquid is assumed to be inviscid and the validity of this is discussed in
the next section. The flow is taken to be quasi-two-dimensional, assuming a negligible
z-direction velocity compared with the velocities parallel to the solid plane and
consequently a negligible z-direction pressure gradient. Then the governing equation
is the Laplace equation of the velocity potential φ:

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (2.1)

It is supposed that the velocity potential and the flow boundary are slightly disturbed
from a basic state in which a straight rivulet flows with the x-direction velocity U.



Meandering instability of a rivulet 247

y = l+ (x, t)y = l– (x, t)

x

y = –a y = a(a)                                                                                (b)
y

z

�R �A y

Figure 1. Schematic of an undulated rivulet. (a) Top view; (b) cross-sectional view.

Then the velocity potential of the liquid, φl , is written as a sum of the base solution
φ

(0)
l and the first-order perturbation φ

(1)
l :

φl = φ
(0)
l + φ

(1)
l

= Ux + (A cosh ky + B sinh ky) exp(ikx + iωt), −a � y � a, (2.2)

where k and ω denote the wavenumber and angular frequency of the disturbance,
respectively. The velocity potentials of the gas on either side of the rivulet are

φg+ = φ
(0)
g+ + φ

(1)
g+

= U ′x + G+ exp(−ky + ikx + iωt), y > a, (2.3)

and

φg− = φ(0)
g− + φ(1)

g−

= U ′x + G− exp(ky + ikx + iωt), y < −a. (2.4)

The kinematic boundary conditions at y = ±a are such that

D

Dt
(y − l+) = 0, y = a, (2.5)

and
D

Dt
(y − l−) = 0, y = −a, (2.6)

where the rivulet edge perturbations, l+ and l−, are written as

l+ = L exp(ikx + iωt) (2.7)

and

l− = L exp(ikx + iωt + iθ). (2.8)

The first-order expressions of (2.5) and (2.6) become

∂φ(1)

∂y
=

∂l±

∂t
+

∂φ(0)

∂x

∂l±

∂x
, y = ±a, (2.9)

for both liquid and gas. Then we can express A, B , G+ and G− in terms of L as

A =
i((ω/k) + U )(1 − eiθ )

2 sinh ka
L, (2.10)
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B =
i((ω/k) + U )(1 + eiθ )

2 cosh ka
L, (2.11)

G+ = −i((ω/k) + U ′)ekaL, (2.12)

G− = i((ω/k) + U ′)eiθ+kaL. (2.13)

The zeroth-order dynamic boundary condition (DBC) at y = a is

1

2
(ρlU

2 − ρgU
′2) +

σ

Rb

= �P0, (2.14)

where ρl and ρg are the densities of the liquid and gas, respectively, σ is the liquid’s
surface tension, R−1

b the curvature of the rivulet cross-section in the base state, and
�P0 the pressure adjustment. The first-order DBC at y = a is

ρl

∂φ
(1)
l

∂t
− ρg

∂φ
(1)
g+

∂t
+ ρl∇φ

(0)
l · ∇φ

(1)
l − ρg∇φ

(0)
g+ · ∇φ

(1)
g+ + σ

(
−∂2l+

∂x2
+ δκ+

)
= 0, (2.15)

where δκ+ denotes the disturbance of rivulet curvature in the (y, z)-plane. This
curvature disturbance is related to the dynamic contact angle, i.e. the deviation of
the contact angle from the equilibrium value due to the motion of the contact line.
We emphasize that although the rivulet curvature arises both in the (x, y)- and (y, z)-
planes, the dominant capillary pressure difference develops in the y-direction. This is
consistent with the two-dimensional modelling employed here. The dynamic contact
angle is a function of the contact line speed in general (Dussan V. 1979). Here we
assume a linear relationship between the curvature disturbance and the contact line
speed uCL:

δκ± =
C

Rb

uCL,±, (2.16)

where the subscript ± denotes the value at y = ±a. As shown in Appendix A, uCL is
given by

uCL,± =
∂l±

∂t
. (2.17)

The coefficient C in (2.16) can be related to the dynamic and equilibrium contact
angles as shown in Appendix B. The first-order DBC at y = −a is

ρl

∂φ
(1)
l

∂t
− ρg

∂φ
(1)
g−

∂t
+ ρl∇φ

(0)
l · ∇φ

(1)
l − ρg∇φ(0)

g− · ∇φ(1)
g− + σ

(
∂2l−

∂x2
− δκ−

)
= 0. (2.18)

After substituting (2.10), (2.11) and (2.12) into (2.15), and also (2.10), (2.11) and
(2.13) into (2.18), we rearrange the two algebraic equations to give[

ρlk

(
ω

k
+ U

)2

coth ka + ρgk

(
ω

k
+ U ′

)2

− σ

(
k2 + i

C

Rb

ω

)]
(1 − eiθ ) = 0 (2.19)

and[
ρlk

(
ω

k
+ U

)2

tanh ka + ρgk

(
ω

k
+ U ′

)2

− σ

(
k2 + i

C

Rb

ω

)]
(1 + eiθ ) = 0. (2.20)

The simultaneous equations (2.19) and (2.20) are satisfied either when θ = 0 and

ρlk

(
ω

k
+ U

)2

tanh ka + ρgk

(
ω

k
+ U ′

)2

− σ

(
k2 + i

C

Rb

ω

)
= 0 (2.21)
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or when θ = π and

ρlk

(
ω

k
+ U

)2

coth ka + ρgk

(
ω

k
+ U ′

)2

− σ

(
k2 + i

C

Rb

ω

)
= 0. (2.22)

The former case corresponds to the sinuous perturbation and the latter to the varicose
perturbation.

We note that when C is set to be zero, i.e. when the variation of the curvature
in a plane perpendicular to the solid surface is neglected, (2.21) and (2.22) become
identical to the results of Hagerty & Shea and Debye & Daen. This is when the
problem is strictly two-dimensional. When C is not zero, the foregoing quasi-two-
dimensional governing equation still neglects the z-direction contribution. This in turn
makes the boundary conditions involving z-coordinates mathematically unnecessary.
Consideration of the pressure distribution in the quasi-two-dimensional picture leads
to the assumption that the meandering in the (x, y)-plane is due to the pressure
gradient in the (x, y)-plane, which makes a good physical sense. Our dynamic
boundary conditions impose only two pressure jump conditions, corresponding
respectively to advancing and receding fronts. This is consistent with the geometric
approximation that the rivulet cross-section is made up of two arcs having radii RA

and RR as explained in Appendix B.
We rearrange (2.21) to examine instability by the sinuous perturbations:

(η + tanh ka) ω2 + k

(
2U tanh ka − i

σ

ρl

C

Rb

)
ω + k2U 2 tanh ka − σ

ρl

k3 = 0, (2.23)

where η denotes the ratio of the gas density to the liquid density. Equation (2.23) is
non-dimensionalized with the time scale taken to be τ = a/U :

(η + tanh k̃)ω̃2 + k̃

(
2 tanh k̃ − i

β

We
C̃

)
ω̃ + k̃2 tanh k̃ − k̃3

We
= 0, (2.24)

where ω̃ = aω/U , k̃ = ka, C̃ = CU , β = a/Rb, and the Weber number We = ρlU
2a/σ .

It is noted that β is determined solely by the equilibrium contact angle θe when the
gravitational effect is negligible. In such a case, β = sin θe. The rivulet is unstable
to the sinuous perturbations when ω̃ includes imaginary parts. We employ computer
software to solve (2.24) and to examine the perturbation growth rate.

3. Results and discussion
As indicated by (2.24), the response of a rivulet to sinuous perturbations is

dependent on the density ratio η, the Weber number and the wetting-related
properties, such as θe and C̃. Since (2.24) contains complex coefficients, we resort
to a numerical procedure to investigate the character of rivulet instability. Here we
consider a water rivulet flowing in air down a surface of Parafilm M laboratory sealing
film (American National Can, Chicago, IL) as a control condition, which corresponds
to our experiment described towards the end of this section. In this case, η = 0.00121
and θe = 97.4◦.

Figure 2(a) shows the growth rate of perturbations corresponding to the
dimensionless wavenumber k̃ for different Weber numbers. Here the growth rate
q denotes the negative imaginary part of ω̃ having a greater magnitude than the other
imaginary part. As the Weber number increases while the other conditions remain
unchanged, both the wavenumber of the maximum instability and cutoff wavenumber
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Figure 2. Growth rate versus k̃ with η = 0.00121 and θe = 97.4◦. (a) The Weber number is
varied with a constant C̃ = 1; (b) C̃ is varied with a constant We = 3.
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Figure 3. Dependence of the wavenumber of maximum instability (solid line) and the cutoff
wavenumber (broken line) on (a) C̃ and (b) We. In (b), C̃ = 0.1, 0.5, 1, 5, 10 and 100.

increase. Figure 2(b) shows the characteristics of instability as C̃, the dynamic wetting
parameter, varies while We is kept constant. The wavenumber of maximum instability
increases as C̃ increases but the growth rate tends to decrease after initially increasing
with the increase of C̃.

Figure 3 summarizes the dependence of the wavenumber of maximum instability
k̃max and the cutoff wavenumber on We and C̃. It is clear that as We increases, k̃max

increases. In more physical terms, the most dangerous wavelength decreases as the
rivulet inertia becomes stronger compared with the surface tension. Figure 3(a) shows
that k̃max increases with C̃ when C̃ is small but the rate of increase starts to saturate as
C̃ exceeds about 10. We recall that C̃ represents how sensitively the curvature of the
rivulet cross-section, or dynamic contact angle, changes with the contact line speed.
This tendency therefore indicates that k̃max is proportional to the sensitivity of the
dynamic contact angle to the contact line speed when the sensitivity is low. However,
when C̃ is fairly large, which limit leads to the contact angle hysteresis, k̃max varies
little. The figure also reveals that the cutoff wavenumber shows no change with varying
C̃ at a given Weber number. We note that the dynamic wetting effect, or non-zero
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C̃, dramatically increases both k̃max and the cutoff wavenumber compared with those
wavenumbers corresponding to C̃ = 0. When C̃ = 0, we obtain k̃max = 0.0016, 0.0036
and 0.0056 for We = 3, 6 and 9 respectively. Figure 3(b) directly reveals such an
influence of We on k̃max: that k̃max is proportional to We at a given C̃. On the other
hand, we find that the cutoff wavenumbers for different C̃ collapse to a single line,
which is consistent with the observation made in figure 3(a). Figure 3(b) also suggests
that the rivulet is stable, regardless of C̃, for We < 1. It is difficult to derive this
condition from the general case (2.24). However, in limiting cases where the coefficient
of ω̃ is either purely real or imaginary, the critical We determining the rivulet stability
can be easily obtained. When 2 tanh k̃ � βC̃/We, the following condition should be
satisfied for sinuous perturbations to grow:

f (k̃) = (η + tanh k̃)
k̃3

We
− ηk̃2 tanh k̃ < 0. (3.1)

Since we are interested in the behaviour of f (k̃) near the critical Weber number where
k̃ � 1, we approximate tanh k̃ ≈ k̃ and (3.1) reduces to

k̃ < η(We − 1). (3.2)

Therefore, a rivulet is always stable when We < 1. In the other limiting case where
2 tanh k̃ � βC̃/We, ω̃ is found to be

ω̃ =
1

2A

[
iB ± (−B2 − 4AD)1/2

]
, (3.3)

where A= η + tanh k̃, B = k̃βC̃/We, and D = k̃2 tanh k̃−k̃3/We. For the perturbations
to grow, ω̃ should have a negative imaginary part and thus it follows that

k̃

tanh k̃
< We. (3.4)

Since the minimum value that k̃/ tanh k̃ can have is 1, the critical Weber number is
again found to be 1.

Figure 4 reconfirms the observation from figure 2(b) that the maximum growth
rate, qmax, at a given condition initially increases with the increase of C̃ but drops
after reaching a maximum. Therefore, we may note that there exists a C̃ value, or a
dynamic wetting condition, which makes the rivulet most unstable for a given Weber
number. In addition, those C̃ values corresponding to the maximum of qmax increase
as We increases.

Figure 5 shows the effect of the density ratio on k̃max. There exists a density
ratio which minimizes k̃max for a given condition and it decreases as We increases.
Furthermore, k̃max varies more sensitively to a change of η as We increases.

Among those factors affecting the rivulet instability, the effect of β has not yet been
investigated. In fact, β , or alternatively θe, cannot independently vary without causing
a change of C̃. That is, once we alter the liquid/solid combination, both the static
and dynamic wetting properties change. The dependence of the rivulet instability
characteristics on β can be inferred with ease by observing the influence of C̃.

To verify our theoretical predictions, we perform a simple experiment and measure
the wavelength of a meandering rivulet. In the experiment, water is supplied through a
1.6 mm diameter nozzle by a syringe pump. The solid surface is parafilm as mentioned
at the start of this section and is inclined 10◦ with respect to the horizontal. When the
flow rate is too low, a droplet flow emerges as Schmuki & Laso observed, but when it
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Figure 5. k̃max versus η for varying We with a constant C̃ = 1.

is too high, the rivulet tends to accelerate due to gravity. A typical experimental result,
when the rivulet acceleration is insignificant, is a meandering wavelength of about
14 mm for rivulet width and the flow rate of 2.7 mm and 0.93 cm3 s−1, respectively.
The average axial flow velocity is 0.27 m s−1. An experimental image of the rivulet is
shown in figure 6. This is indeed a reasonable value as we frequently observe in our
daily lives including those of water traces on bathtubs and dishwashers.

Comparison of the experimental measurement with the theoretical prediction
requires knowledge of the dynamic wetting properties, as represented by C, in
dimensional form, in this work. Evaluation of C involves the measurement of dynamic
contact angles and contact line speed as discussed in Appendix B. We measured those
quantities using a water drop sliding on an inclined parafilm surface (Kim, Lee
& Kang 2002), which revealed that C is approximately 3.5 and thus C̃ ≈ 1 for the
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20 mm

Figure 6. Photograph of a water rivulet flowing down a parafilm surface. Water flows from
left to right.

measured values of u1 = 18 mm s−1, θA = 102◦ and θR = 94◦. Here u1 is the magnitude
of both the advancing (positive value) and receding (negative value) contact line speed
since the sliding drop has both advancing and receding edges. Our theory predicts that
when We = 1.4 and C = 3.5, the most dangerous meandering wavelength is 14.5 mm,
which agrees well with the experimental result. In addition to our own experimental
result, we compare our theoretical prediction with the experimental results reported
by Nakagawa & Scott (1984). In their experiments, a water rivulet on Plexiglas was
employed with the flow rate of 1.72 cm3 s−1 and the corresponding We = 1.1. The
sliding drop method results in u1 = 28 mm s−1, θA = 104◦ and θR = 22◦. This gives
C = 3.9 with θe = 62◦ and the most dangerous meandering wavelength is calculated
to be 82 mm. This value agrees with the rivulet wavelength shown in figure 5 of
Nakagawa & Scott for waves within 150 mm of the nozzle.

Here we address the question of whether our inviscid modelling is applicable to
the foregoing experimental conditions. For an inviscid instability assumption to be
valid, the ratio of the time scale for the fastest-growing instability to develop to the
momentum diffusion time scale should be much smaller than unity (Schiaffino &
Sonin):

ν

q∗a2
� 1, (3.5)

where ν is the kinematic viscosity of the liquid and q∗ the dimensional growth rate
at k̃max. This ratio is calculated to be 0.076 and 0.36 for the current experiment and
that of Nakagawa & Scott, respectively. Therefore, our inviscid modelling is more
appropriate for the current experiment. Another criterion for the viscous effects not
to affect most of the rivulet core is given by

X � h2U/ν, (3.6)

where X is the distance from the nozzle and h is the rivulet height. We have
h ≈ 1.4 mm for the current experiment because the contact angle is close to 90◦.
Then (3.6) gives X � 600 mm and it is applicable to the current experiment. In the
case of Nakagawa & Scott, h2U/ν is 660 mm and thus the region considered for the
comparison above satisfies (3.6).

4. Concluding remarks
Although the varicose instability of a rivulet contacting solid and the asymmetric

instability of a jet in air have previously been analysed, the rivulet meandering
instability has not been theoretically addressed thus far. Therefore, we have analysed,
for the first time, such a meandering instability of a rivulet in this work. We conclude
with a discussion of the nature of this instability in the following.
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x

(a)                                           (b)

z
y

uCL uCL

Figure 7. Effect of capillary forces on instability. The curvature in the (x, y)-plane induces
higher liquid pressure on the left both in (a) and (b) and thus stabilizes the disturbance, i.e. it
tends to straighten the rivulet. On the other hand, the curvature in the (y, z)-plane as shown
in (a) is such that the higher liquid pressure is developed on the right. Hence it promotes the
meandering undulation. The curvature in the (y, z)-plane of (b) develops higher liquid pressure
on the left and thus stabilizes the flow.

The fundamental mechanism behind this instability is in part related to the
tangential velocity difference at the liquid/gas interface. At the same time, the capillary
force due to the curvature in the (x, y)-plane (figure 1) always stabilizes sinuous
disturbances as it tends to straighten the rivulet. The Weber number represents the
ratio of the destabilizing force (inertia) to the stabilizing force (surface tension). Our
theory predicts that as We increases, both the wavenumber of maximum instability
and the cutoff wavenumber increase. On the other hand, the dynamic wetting effects,
i.e. the curvature variation at moving contact lines, are rather subtle. The effect
of the capillary force related to the contact line movement depends on the flow
direction. Therefore, as shown in figure 7, it may either destabilize or stabilize
the flow, independent of the perturbed rivulet shape. We presume that the cutoff
wavenumber is kept constant at a given Weber number, as in figure 3(a), due to such
effects of the dynamic wetting.

Appendix A. Contact line speed
The contact line speed, uCL, corresponds to the rate of motion of the contact line

normal to itself, and is written as

uCL = dxux + dyuy, (A 1)

where dx and dy denote the direction-cosines of the normal at (x, y) and ux and uy

are the velocities in the x- and y-directions, respectively. When the contact line is
described as F (x, y, t) = y − l(x, t) = 0, we have (Lamb 1932)

dx =
∂F/∂x

ξ
and dy =

∂F/∂y

ξ
,

where ξ = [(∂F/∂x)2 + (∂F/∂y)2]1/2. It is easy to show that ξ ≈ 1 thus dx ≈ −∂l/∂x

and dy ≈ 1. Therefore (A 1) becomes

uCL = − ∂l

∂x
ux + uy. (A 2)

Combining (A 2) with the kinematic boundary condition leads to

uCL =
∂l

∂t
. (A 3)
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Figure 8. Geometry for a cross-section of a dynamic rivulet.

Appendix B. Curvature and dynamic contact angles
Here we show that the coefficient, C, appearing in (2.16) can be expressed in terms

of θe, the advancing contact angle θA and the receding contact angle θR when a few
assumptions are made. As shown in figure 8, we assume that the maximum height of
a rivulet lies where the arcs having radii RA and RR meet and that the liquid partially
wets the solid (0 � θe � π). Then we write

αj = 2

{
θj − tan−1

[
h

w
(cot θA + cot θR) tan θj

]}
, (B 1)

where j denotes A or R and w the rivulet width. Geometric considerations give RA

and RR as

Rj =
cot θj [w

2 + h2(cot θA + cot θR)2 tan2 θj ]
1/2

√
2(1 − cos αj )1/2(cot θA + cot θR)

. (B 2)

When αj � 2θj and the distortion of the rivulet due to dynamic wetting is not severe,
i.e. 2h/w ≈ tan(θe/2), a tedious algebraic procedure leads to

1

Rj

=
sin(θj − θe/2)√

2Rb(1 − cos θe)1/2
. (B 3)

If a linear relationship between the dynamic contact angle and the contact line speed
is assumed (Greenspan 1978), we have

θj =
θj,1 − θe

u1

uCL + θe, (B 4)

where θj,1 denotes a dynamic contact angle corresponding to a contact line velocity
u1. We assume that there is no contact angle hysteresis. It can be readily shown that
this linear relationship is similar to Hoffman’s law (Hoffman 1975) written as

uCL = γ
(
θ3
A − θ3

e

)
, (B 5)

where γ is the empirical constant (Fermigier & Jenffer 1991), when (θA − θe)/θe � 1.
Based on the foregoing assumptions, we approximate (B 4) as follows:

sin(θj − θe/2)

sin(θe/2)
= C∗uCL + 1, (B 6)



256 H.-Y. Kim, J.-H. Kim and B. H. Kang

where C∗ is given by

C∗ =
sin[(θA,1 − θR,1)/2]

u1 tan(θe/2)
. (B 7)

It is interesting to note that (B 3) can be rewritten as

1

R
=

1

Rb

+
C∗

Rb

uCL, (B 8)

where the advancing contact line corresponds to positive uCL and the receding contact
line to negative uCL. Then we find that (2.16) and (B 8) are equivalent and thus C = C∗.

REFERENCES

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon. (Also Dover,
1981.)

Culkin, J. B. & Davis, S. H. 1984 Meandering of water rivulets. AIChE J. 30, 263–267.

Davis, S. H. 1980 Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid
Mech. 98, 225–242.

Debye, P. & Daen, J. 1959 Stability considerations on nonviscous jets exhibiting surface or body
tension. Phys. Fluids 2, 416–421.

Dussan V., E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact
lines. Annu. Rev. Fluid Mech. 11, 371–400.

Fermigier, M. & Jenffer, P. 1991 An experimental investigation of the dynamic contact angle in
liquid-liquid systems J. Colloid Interface Sci. 146, 226–241.

Greenspan, H. P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech.
84, 125–143.

Hagerty, W. W. & Shea, J. F. 1955 A study of the stability of plane fluid sheets. J. Appl. Mech. 22,
509–515.

Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid-gas systems.
J. Colloid Interface Sci. 50, 228–241.

Kern, J. 1969 Zur Hydrodynamik der Rinnsale. Verfarenstechnik 3, 425–430.
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